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ABSTRACT- The Perturbed Spectrum Technique (PST) presented in this paper is a
perturbation-based method for wave propagation in optical waveguides. The method reduces
the scalar wave equation to a couple of ordinary differential equations, which can be
solved using the spatial Fourier transform of the transverse distribution of the
propagating field. The method can deal with arbitrary refractive index profile as well as
arbitrary excitation. The validity of the PST is checked through the study of directional
coupler, graded index waveguide and step discontinuity in a planar guide. The results
obtained by that method fairly agree with those obtained by other numerical and anal ytical

methods.

INTRODUCTION

We believe that the numerical solution of the
wave equation is a crucial factor in deciding
wether the relevant theoretical treatment is
valuable or not. One of the most widely used
methods: the beam-propagation method (BPM) [1-9]
requires small variations in the refractive
index distribution. Recently, Kumar et. al [4].
introduced a method based on a double Fourier
transform applied twice to the propagating
field: transverse to the direction of
propagation and in the direction of propagation.
Thus the problem is reduced to a system of
algebraic equations for the unknown double
Fourier transform which can be solved by matrix
manipulations. A major problem in their method
occurs if the propagating field has some
periodicity in the direction of propagation,
because it will be reflected as sharp giant
spikes in the Fourier transform taken along the
direction of propagation. These spikes are very
offensive in numerical calculations; and that is
why  Kumar et. al. used a fictitious
exponentially decaying function to reduce the
amount of these spikes. The rate of decay of
that function plays a crucial role in the
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accuracy of the computations. Unfortunately
Kumar et. al. did not give a general criterion
for an adequate choice of the rate of decay of
that fictitious function. However, their
results [4] are satisfactory.

In this paper we present a perturbation-based
formulation of the propagation problem that
leads finally to a couple of ordinary differen-
tial equations for the transverse spatial
Fourier spectrum of the unperturbed and the
perturbed part of the spectrum of the total
propagating field. The solutions of these two
equations are calculated numerically using the
discrete  Fourier transform which can be
calculated by the well known Fast Fourier
Transform (FFT) algorithm.

I- THEORY

Most of the integrated optical components are
fabricated frem optical waveguides which have
small refractive index varaiations, and hence
the paraxial approximation is very adequate to
describe the wave propagation in such
waveguides. For simplicity, let us consider a
planar optical waveguide in which the
propagation is in the =z - direction, the
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propagating field is confined in the x -
direction only, and the waveguide is y -
invariant. Let a monochromatic electric field e

y
be polarized in the y - direction, and has a
time-dependence exp (-i w t), where w is the
angular frequency. Assume that the refractive
index profile n(x) of the waveguide can be
written as:

n{x) =n + an(x) (1)
] 1

where « is a small dimensionless parameter,
which can be taken for example as the maximum
variation of n (x) relative to the constant
refractive index n.

Let us write cy as:

e (x,z,t) = E (x,z). exp (ikz - iwt) (2)
where k is the wave number in a homogeneous
medium whose refractive index is n. Modifica-
tions in ey due to the propagation in the

inhomogeneous medium n(x) are contained in
E (x,2). The two dimensional wave equation for

e is:
y
aze aze - .
2’ + zy +k° nix)e =0 (3)
ax 8z ° v

When (2) is substituted in (3), and the second

partial z-derivative of E is neglected we
obtain:
a’E dE 2 2 2
+ i2k -kE +k  n(x) E=0 (4)
ax dz o

where ko is the free-space wave number, and k =
k n.
o o
Seeking a solution of E as the sum of two
fields: the first one Eo corresponds to a field

propagating in a homogeneous medium (i.e. when
n(x) = nol and the other field e considered as

a perturbation to Eo, thus we write:
E (x,z) = Eo (x,2z) + e (x,z) ()
where EZ‘J satsfies (4) when n (x) = n, that is:

a%E 8E

2“ + i2k 2 0 (6)
ax dz

Expanding e, as a power series in the small

parameter o:

e (x,2) = « El(x.z) + al Ezlx.z) + ...etc. (7)

Substituting the first order term, i.e. « El, in
(5), then substituting E = Eo + o El in (3), and
neglecting terms of order uz, we obtain the

following inhomogeneous wave equation for the
first-order perturbation EI:

8°E, oE, 22
+ 12k — = - n(x) E (x,z) (8)
z n 1 o
ax o
When (6) is transversly Fourier-transformed

(i.e. with respect to x), we get:

2 dlpo
k" yw (k , z) + i2k = 0 (9)
x (o] x
dz
where:
1]
v (k ,z) = J E (x,2z) exp (-ik x)dx (10)
o x S o x

is the transverse spatial Fourier transform of

Eo and kx is the transverse spatial frequency

{the variable of the transform). Equation (9) is

a first-order ordinary differential equation
with parameter kx, it has the solution:
3 2
\ho (kx,z) = wo{kx.o) exp ( 1kx z/2k) (11)
where wo (kx.O) is the transverse spatial

Fourier spectrum of Eo at z = 0. Similarly, when

(8) is Fourier-transformed we get:

2 i dwl
—l':x qtri (kx.z) + i2k -4 ° -F(k .g) (12)
where:
o
“’; (kx,z] =..£ El(x.z) exp (—kaxldx (13)

is the perturbation in the Fourier spectrum of
the total propagating field, while the source
term F(kx.z) in (12) is:
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K2 ®
F(k, z) = J n(x) E (x,2) exp(-ik x) dx
x n 1 ] ®
o —m
-2 NG)ey (k, 2) (14)
n 1 x o x

o

where N1 (kx) is the Fourier spectrum of nllxl,
and ® denotes the convolution of N‘1 and Wo with
respect to kx. If the total field E (x,z) starts

propagation at z = 0, then the perturbation part
EI1 vanishes at z = 0, and as far as the

propagation takes place, the field I-:D will be
accordingly modified by El. Thus; the solution
of (12) with the initial condition wl =0 gt Z =
0 taking into account (11) is [5]:

2 z
vk ,z) = ikoe‘"‘x”z“ I'; {Nl(kx) @ wnth.g)}

2
ol £/2k d& (15)

We can write (15) in a more compact form by
denoting ¢ (kx,E) = Nl ® ¥ in the integrand, so
o

we can write:

Z z
—lkxzf2k I ¢ (kx i 6)

0

gk , z) =1k e
o

1 x

2
e.mx E/2k d& (16)

This equation, together with (Il) constitute the
solution of the problem.

2~ NUMERICAL SOLUTION

The use of the discrete Fourier transform (DFT)
enables us to calculate the wo in (11) and ¢ in

(16), and hence the integral can be calculated
using any of the well known methods:
trapezoidal, Simpson’s rule or Romberg method.
The integration in (16) is to be calculated over
a small propagation step Az (i.e. from 0 to Az).
ltl‘ is inverse-Fourier transformed to obtain the
perturbation  part Ellx,nz) of the total
propagating field. Then, \bl[kx,Azl is calculated

from (11) since the spectrum of the initial
field at z = 0 1is known, and hence the

propagation process of Eo(x.O) is reduced to a
wo(kx.O) by  the
propagator exp (—iki Az/2k). The field Eolx,Az)

simple  multiplication  of

inverse-Fourier
El{x,Az) is

is easily
transforming

obtained by
lbo(kx,Az). Finally,

multiplied by the small parameter o« and the
result added to Eo(x.ﬁz) to yield the total

field E(x,Az). That field will be considered as
the initial unperturbed field Eo for the next

propagation step and so on.

Concerning the evaluation of the integral in
(16), we expected that Romberg method will allow
to take relatively large Az, but we did not
remark any significant improvement in the step
size, and almost identical results are obtained
using trapezoidal, Simpson’s or Romberg method.
This is because the accuracy of the evaluation
of the integral in (16) depends strongly on how
fast the exponent in the integral in (16)
varies. As a creterion, we require that the
argument of the exponential do not vary by no
more than m over one step at the spatial

frequency corresponding to the highest
significant component in the source term
¢(kx.£ ), and hence the proper choice of Az

depends on the extent of the Fourier spectrum of
the source term ¢ in the Kx-— domain. Accordingly

Az must satisfy the following inequality:
Az = (A n /4) k° (17
[+] X

Where kx is the spatial frequency corresponding

to the highest significant component in the
spectrum of the source term ¢.

An advantage of the PST presented in this paper,
is that we do not need the solution of a system
of algebraic equations which may requires matrix
inversion, and hence no problems concerning
stability or singularities are faced.
Furthermore, we do not need any fictitious
function like that one needed in Kumar et.el.[4]
approach, however we need to put an absorber at
the boundary of the computational window to
prevent the reflection of the high-frequency
component of the spectrum of the propagating
field from the boundary of the computational
window. This is a well known technique which is
often used in any Fourier transform-based
approach like the BPM[I-9]. It is worthy to note
that while the BPM requires small index-
varitions, no such requirement is essential In
the perturbed spectrum technique (PST) proposed
in this paper.
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3- RESULTS

To test our method, we considered some
previously studied problems: the propagation in
graded index waveguide, and a pair of coupled
waveguides, as well as the radiation loss in a
step discontinuity in planar waveguides.

a- Graded Index Guide

illumination in a
waveguide was

The focusing of a uniform
truncated parabolic-index

demonstrated by Kumar et. al.[4] using a double
transform technique when the refractive index
profile takes the following distribution:

n”, |x| = dr2

n” (1=x> &),  |x| < ds2
2 5
n’(x) = (18)

where d is the core thickness and,
A = 4(n® - n®) /n® & (19)
£ s g

Kumar et.al. [4] studied this problem when d =
20 um, nt = 2.155, n' = 2.1398 and the wave-

length A = 1.32 pm. They found that focusing
occurs after a propagation distance nearly equal
to 140 pm. Figure 1, shows the field evolution
each 15.5 um, where the focusing effect is
easily remarked.

FIELED & Z (microns)

PRIl ORPRI Y7 ] IR | gulie eemnlog s sl)

-35.0 ~25.0 -15.0 -5.0 5.0 15.0 25.0 35.0
X(microns)

Fig. 1 Focusing of uniform illumination
gating in a parabolic

optical waveguide.

propa-
index planar

b- Coupled Waveguides

The field evolution in a pair of coupled planar
waveguides separated by 0.4 um was investigated

by Kumar et.el. (4], when each guide has a
thickness 4 pm and a refractive index 2.155
inside the guides and 2.1398 everywhere outside
the guides, the wavelength A = 1.32 pm. The
coupled-mode theory predicts a coupling length
equal to 290 pm. Figure 2 shows the field
evolution each 32 um  when the right guide is
excited with the fundamental mode. It can be
seen that almost complete power transfer from
the left guide to the right guide occurs after
2590 pm.

FIELED & Z (microns)

PR T =7 (ra] I | IR I |
-15.0 -10.0 -5.0 0.0 5.0 i0.0 15.0
X (microns)

Fig. 2 Power transfer between a pair of coupled
waveguides.

c- Step Discontinuity

The power loss by forward radiation at the
junction between two single-mode symmetrical
planar waveguides (as shown in the inset of
figure 3) was studied previously by many
authors [6-9].The left waveguide is excited with
its fundamental mode. The ratio dl/d2 is kept

constant equal to 0.5 while kG cll is varied. The
radiated power Pr relative to the power incident

from the left of the step reaches a minimum
value [6-9] at l<‘J d1 = 23, A = 157, nI = 1.01

and n = 1.0 (data from references 7-9). We

calculate the total propagating field E(x,z) far
enough to the right of the junction plane using
our method: the PST. To extract the modal field
from the total propagating field E(x,z), we can
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Fig. 3 Relative radiation loss Pr at a step
discontinuity
Integral equation method
—-—-— Residue - calculus method
———————— Mode - matching method
B Present method
+ Beam propagation method

expand (10] the latter one in terms of the
eigenmodes of the planar waveguide located at
the right of the step thus we can write:

E(x,z) =t ¢ (x) ] (20)

where ?, (x) is the transverse distribution of

the fundamental mode of the single-mode
waveguide at the right of the step, B is the
propagation constant, R is the Fourier integral
representing the total radiation field and t is

the excitation coefficient of the fundamental
mode. The scalar product of both sides of (20)

L ]
with the complex conjugate P exp (iBz) gives:

i -
J E(x,z). ¢, dx
-0

[+] 0 2
T ]cpol dx
~00

The guided transmitted power is readily obtained
once to is calculated and hence the relative

radiated power P is easily obtained since it is
r

the difference between the incident power and
the guided power transmitted across the

Jjunction. To test the accuracy of our method, Pr

is calculated as a function of ko dl in the

vicinity of the point of minimum radiation loss.
We compared our results (solid dots on figure 3)
with those obtained by very accurate methods:
the integral equation method [7] (continuous
curve in figure 3), residue-calculus method [8]
(dotted curve in figure 3) and the mode-matching
method [9] (dashed curve in figure 3), while the
crosses present the results obtained by the BPM
[6]. It can be seen that our method is quite
accurate since it gives a minimum radiation loss
very close to the accurate value 0.007, while
the BPM gives a minimum radiation loss of 0.0l1l.

4- CONCLUSION

In this paper we propose a method that can be

applied to graded index planar guides of
arbitrary profile as well as arbitrary
excitation. Generalization to three dimensional

waveguides is possible if the transverse Fourier
transform is substituted with a Hankel transform
to take into account the two dimensional
confinement of the propagating field.The results
obtained by our method fairly agree with those
obtained with other numerical and analytical
methods. We believe that the method can also be
applied to waveguides exhibiting nonlinearities
if these nonlinearities can be considered as
perturbations, and in this case, the source term
of the nonhomogeneous wave equation govering the
propagation of the perturbed part of the total
propagating field, (r. h. s. of (8)), will be

proportional to |Eo|2. or any other power of the
nonperturbed part Eo. Even if the r.h.s. of (8)

includes terms proportional to the perturbed
part El of the total field, then the solution

will be an Volterra-type integral equation which
can be solved by many well known techniques.

The numerical accuracy of the method relative to
other methods is checked through the calculation
of the radiation loss at a step discontinuity In
symmetrical planar waveguides.
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